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In this paper  waves on the surface of a viscous incompress ible  liquid are  investigated in a 
l inear  approximation. It is shown that the l inear  theory gives the principal  t e r m  of the solu- 
tion of the problem of s teady-s ta te  two-dimensional  waves of small  amplitude in an exact 
formulation.  Subsequently a three-dimensional  s teady-s ta te  motion of a viscous liquidwith 
high surface tension in a vessel  is considered.  In the f i rs t  approximation the free boundary 
is determined as a minimum surface in a field of gravity.  The velocity field is found f rom 
the solution of the Nav ie r -S tokes  equations. 

1. Linear  Approximation in the Theory of Surface Waves. The descript ion of wave motions of a vis-  
cous liquid leads to a necess i ty  of solving problems for  the Nav ie r -S tokes  equations with an unknown bound- 
ary .  Such problems at the present  t ime are  insufficiently studied (for the state of the problem see [1] and 
the bibliography given there and also [2, 3]). There exists a number  of approximate models of surface 
waves in a viscous liquid. Historically the f i rs t  of them was the l inear  theory of waves (Stokes [4]). T h i s  
theory was developed in the investigations of Lamb [5], L. N. Sretenskii [6], and other authors.  

As far  as the author knows, up to now there is no answer to the question about the c loseness  of the 
solution of the wave problem in the exact formulation (as a problem with a f ree boundary for the N a v i e r -  
Stokes equations) and in an approximation of the l inear  theory.  Here this question is considered in the p a r -  
t icular  case of two-dimensional s teady-s ta te  waves. In addition, the analysis is confined to an investiga- 
tion of periodic wave motions of the forced-vibrat ions type. Examples of such motions are:  a motion in a 
s tr ip whose upper boundary is free,  while the lower (the bottom) is a rigid s t ra ight- l ined wall, with inflows 
and outflows of the liquid a r ranged  periodically on it; s teady-s ta te  gravity waves above an inclined periodic 
bottom; a motion excited by a periodic passing p ressu re  wave or  a tangential s t r e s s  applied to the free su r -  
face. 

With each of these flows we can associate  a pa rame te r  which is proport ional  to the magnitude of the 
external action (the power of the sources ,  the angle of inclination of the mean line of the bottom to the hori -  
zon, the amplitude of the passing wave) and then consider  the l inear  approximation with respect  to this pa- 
r amete r .  We shall consider  the est imate  of the e r r o r  of the l inear  approximation to the solution of the 
problem in the exact formulation for  small  values of the pa ramete r .  

Below, for  the sake of being definite, we consider  the problem of periodic motion in a str ip with 
sources  and sinks distributed over the bottom. The mathematical  formulation of the problem is as follows. 
It is required to find twice continuously differentiable functions v (xl, x2), (xl) and a continuously differentia- 
ble function p (xl, x2) which satisfy the relationships 

Av- -  v .Vv- -  Vp = 0, V.v ----- 0 (1.1) 

within the str ip --oo -~ x 1 ~:oo, -- t ~ X2 ~ / (xl); 
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v (x~ + z, x~) - v (x~, x~), p (xl + l, x2) - p (xl, x~), l (Xl + z) - / (xJ (1 .2)  

v . n = 0 ,  n . T . z = 0  for x2=](xl) (1.3) 

( ~ ) -  ~ / = . n . T . n  for x:=J(xl) (1.4) 
l 

i I dx~ = o (1 .5 )  
0 

v=sa(x~)  for x 2 = - - t  (1.6) 

Here x 2 = f  (xl) is the equation of the free surface,  f ' -  d f /dxl ,  n and~r are  the base vectors  of the nor -  
real and the tangent to the free surface;  T is the s t r e s s  tensor  with the elements Tij =--P6ij +Ovi/0xj  +~ v j /  
0xi, i = 1,2; v is the velocity vector,  p +#-lXx2 is the p re s su re .  

The relat ionships (1.1)-(1.6) are  wri t ten in t e rms  of dimensionless variables;  distances are  r e fe r red  
to the mean depth of liquid h, velocities are  r e f e r r ed  to vh -1 (v is the coefficient of kinematic viscosity),  
p r e s su re  is r e f e r r e d  to pv2h -2 60 is the density of liquid); X=pgh2cr -1, # =pv2(ah) -1 are  dimensionless posi-  
tive p a r a m e t e r s  (g is the accelera t ion due to gravity;  cr is the coefficient of surface tension); e is a dimen- 
sionless positive p a r a m e t e r  which in the following is assumed to be small .  

The condition (1.3) signifies the absence of flow of the liquid and tangential s t r e s s  on the free su r -  
face. According to the condition (1.4), the normal  s t ress  on the free boundary is equal to the surface p r e s -  
sure .  The condition (1.5) shows that the dimensionless mean depth of the liquid is unity. In the condition 
(1.6) the vector  ftmction a, which specifies the velocity on the bottom (for x2=- l )~ is  assumed to be l - 
periodic with the components at, a 2 f rom the Holder c lass  C 2 +a [0, l] and such that 

l 

f a~ dx 1 = 0 (1.7) 
0 

The condition (1.7) is neces sa ry  for the agreement  of the boundary conditions (1.6) and the f i r s t  equa- 
tion of (1.3) with the equation of continuity. In o rder  to eliminate a possibil i ty of contact of the free su r -  
face with the bottom, we stipulate yet  that the inequality 

1 I ]~<6<1  (6 = constH0 ) 
be fulfilled. 

The existence of a unique solution of the problem (1.1)-(1.6) for small  e follows f rom the resul ts  of 
[3]. We note that introduction of the surface tension into the boundary condition (1.4) on the f ree  boundary 
is essential :  p rec i se ly  this allows the solution of the problem to be reduced to the finding of a fixed point 
of a cer ta in  continuous opera tor  [3]. 

We now formulate  the equations of a l inear  approximation in the problem (1.1)-(1.6).  For  this we dis-  
ca rd  the nonlinear t e rms  in Eqs. (1.1), while the boundary conditions (1.3), (1.4) are  applied to the nonper-  
turbed free boundary x 2 = 0. Denoting 

v = ~ U ,  p = s Q ,  ] = s F  

we ar r ive  at the following l inear  boundary value problem with a fixed boundary: 

a U - -  VO = O, V.U = 0 (1.8) 

within the s tr ip - - ~ < x 1 < c r  - - l < x ~ < 0 ;  

U @1 + l, x~) ~ U (xl, x2), Q (xl + l, x2) ~ Q (xl, x~), F @1 + t) ~ F (xi) (1.9) 

U S : O, OU1/Ox~ ~-- 0 for x 2 = 0 (1.10) 

F"--~.F---~(--Q+2cgUu/Ox2) for x 2 = 0  (1.11) 

I 

i F  dxl = 0 (1.12) 
0 

U = a @ l )  for x ~ = - - I  (1.13) 

The Stokes sys tem (1.8) has a unique solution which sat isf ies the conditions (1.10), (1.13) and the f i rs t  
two conditions (1.9). tf this solution is found, the function F is uniquely determined f rom the differential 
equation (1.11) and the conditions (1.12) and the last  condition (1.9). According to the notions of the l inear  
theory x 2 = e F (xi) is the equation of the free boundary "in the f i rs t  approximation." 
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2. E s t i m a t e  of the E r r o r  of the F i r s t  Approximat ion .  We shal l  show that  the funct ion ~ F (xl) d e t e r -  
mined  f r o m  the l i n e a r  p r o b l e m  (1.8)-(1.13) g ives  the p r inc ipa l  t e r m  of the a sympto t i c  exp res s ion ,  fo r  ~ ~ 0 ,  
of the funct ion f (xl; ~) which de t e rmines  the f o r m  of the f r ee  boundary  in the p r o b l e m  (1.1)-(1.6). A c o m -  
p a r i s o n  of  the ve loc i ty  and p r e s s u r e  f ields in the p r o b l e m  (1.1i-(1.6) and i ts  l i nea r i za t i on  in t e r m s  of the 
va r i ab l e s  xlx~ is difficult ,  s ince  the funct ions ~ ,  p and U, Q have di f ferent  domains  of defini t ion.  However ,  
it is  poss ib le  to map  the r eg ion  of flow in the p r o b l e m  (1.1)-(1.6) onto the s t r ip  - l < x 2 <  0 and c o m p a r e  the 
solut ion of this p r o b l e m  in d e f o r m e d  coo rd ina t e s  with the solut ion of the  proble~rr (1.8)-(1.13). Fo r  this  we 
go ove r  to  the new independent  va r i ab l e s  

�9 ~ - l (z~) 
~ = x ~ ,  "~= l+/(x~) (2.1) 

The s y s t e m  (1.1) f o r  this is t r a n s f o r m e d  into 

aE.p 1 + / a ~  aE~2 ~- (t + / ?  o ~  -I- ] (t + 1)~ 1 + / 
Oux oq (l-v.~)/' Oq = 0  

a~u~ 2 (i + ~)/ '  a~'u~ t + (I q- ~)~/'~ a~u.z [ 

Ou.~ t Oq - -  0 

Oux (1 + ~:.)/' Ou~ I au.~ 
o~----7- - ~ 7 o~ + ~ + f ~,_ = ~  

u~ } Ou~ 
~- / _ o~ 

u~ Off" 
i + / o~,. 

(2.2) 

(ua ff.~, ~,~) = v, (x~, x2), u2 (~,  ~)  = v~ (~ ,  ~,.), q (~,  ~,.) = p (~,, z.~); / (x,) = / (~,), 1' = d/ / d~ ) 

The bounda ry  condi t ions  (1.2)-(1.6) gene ra t e  the fol lowing boundary  condi t ions  fo r  the s y s t e m  (2.2): 

u~ ( ~  + ~, ~) --- u~ (~, ~), ~, (~ + t, ~) _-__ ~ (~, ~), q (~ + t, ~,) = 

~- q (~1'  ~2) Ul  = eax (~), u~ = ea~ (~.~) for :~  = - -  t 

~ + /,~ oUl _ 2~' o ~  + ( 1 - - / ' ~  o~ / ' 0 + P )  o~ 
)0-E - +  , + /  o~ ~ 0  (2.3) 

u~ - -  ] 'ua -= 0 for ~ -= 0 

, Ou2 ] 2/' (t + / ' 9 0 u x  __ 2/  ~ for ~ = 0 (2.4) 1" --  9~1 = t~ [--  (t -4- 1,2) q _~ 2 (~ + f,2) ou~ 4- 2I '~ Ou---L 
(t + 1'2) "/" ! + / o ~  o ~  

l 

o 

Propos i t i on  2.1. Fo r  g ~ 0  the fol lowing e s t i m a t e s  apply:  

= 0 (2.5) 

l u (h ,  ~ ;  87 - ~ v  (~, ~)I,+~,~ = 0 ( : )  (2 .6 )  

[q (~1, ~2; e7 --  sQ (~1, ~)II+~.E = O (s ~) 

Here  II denotes  the r ec tang le  0 -< ~ 1 -< Z, - 1 -< ~ 2 - 0; u is a vec to r  with the componen t s  ul, u2; notat ion 
of the f o r m  f = f  (~ 1; ~) is used  to e m p h a s i z e  the dependence of the sought quant i t ies  on the p a r a m e t e r  ~.  
If r (x) E C m + a  (~), where  m->0  is a n i n t e g e r ,  ~ is a c losed  bounded region,  then [~Orm+a,  ~ denotes  the 
n o r m  of ~o in C m + a .  

The p roo f  of P ropos i t i on  2.1 is b a s e d  on the fol lowing a p r i o r i  e s t ima te  of the solut ion of the p r o b l e m  
(2.2)- (2.5): 

[ u I~+~,,,, + I Vq I.,: + I / 13+~, [o, tl ~ C~a I a [2+~,, [o, ~1 (2.7) 

which is val id f o r  a f ixed a,  if  e-< e 0 and e 0 is suff ic ient ly  sma l l  (Ck, k = 1,2 . . . .  he re  and subsequent ly  de-  
notes pos i t ive  cons tan ts ) .  The e s t ima te  (2.7) in e s s e n c e  fol lows f r o m  the r e s u l t s  [3] (in that  work  it was  
a s s u m e d  that  X = 0, which is not e ssen t i a l ;  in boundary  condi t ion (i .6) the  p a r a m e t e r  ~ was absent ,  but  in 
spi te  of that  the g iven veloci ty  on the bo t t om was  a s s u m e d  to be smal l ) .  

We in t roduce  the funct ions w = u - e U ,  r = q - e Q  into ihe ana lys i s .  On the b a s i s  of (2.2), (1.8) these  
funct ions  sa t i s fy  in II the s y s t e m  of equat ions  

h w - - V r  = ~p, 7 .w  = ~ (2.8) 

where  A and V a r e  the Lap lac i an  and the g rad ien t  with r e s p e c t  to the va r i ab le s  ~l, ~2, while ~, r a r e  c e r -  
ta in  known funct ions  of ~1, ~2 which a r e  e x p r e s s e d  in t e r m s  of u, q, f and the i r  de r iva t ives .  Essen t i a l  a r e  
the fol lowing inequal i t ies  which a r e  sa t i s f i ed  by the funct ions  ~, ~o fo r  e ~ 0 :  
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I r  ~, I,l~.n~<c~8 ~ (2.9) 

Both inequa l i t i e s  (2.9) a r e  p r o v e d  iden t ica l ly .  We confine o u r s e l v e s  to the f i r s t  of t h e m .  F r o m  (2.2), 
(1.8) we find 

r ="  i - 4 - ~  0~ -4- i _ _  0~ (2.10) 

Since u ~ C 2 Sa  (II), f ~ C ~ +a  [0, l]  [3], we have q0 r t +~ (II). The  e s t i m a t e  (2.9) fol lows d i r e c t l y  
f r o m  the def in i t ion of r (2.10) and the inequa l i ty  (2.7) (since a is  f ixed,  I a 12+a, [0, l ] i s  inc luded in the va lue  
of the cons tan t  C2). 

P r o c e e d i n g  f r o m  the condi t ions  (1.9), (1.10), (1.13) and (2.3) it is  not diff icult  to obta in  bounda ry  con-  
di t ions f o r  the  func t ions  w, r .  They  have the f o r m  

w~ = Z, cgw~ / cB~ = o~ for ~ = 0 
w (~ q- l, ~)  ~ w (~1, ~),  q (~ + l, %3) -~- q (~,  ~)  (2.11) 

w = 0  for ~ = - -  I 

w h e r e  

x = i 'u : l : ,=o ,  ~ = - I "  (:  § 1) ( i  - l " ) u :  -4 
q-/ '  (t q- ]) (t q-/'~)Ou: / 0 ~  - -  / '  (i +/'2)0u2 / 0~2[:,= 0 (2.12) 

The func t ions  X, w b e l o n g  to the c l a s s e s  C 2+a [0, l ] ,  C l+a [0, l ] ,  r e s p e c t i v e l y ,  and in v iew of (2.7) and 
(2.12) admi t  the e s t i m a t e s  

The subsequen t  r e a s o n i n g  is  b a s e d  on apply ing  to the boundary  value p r o b l e m  (2.8), (2.11) the a p r i o r i  
e s t i m a t e s  of the so lu t ions  of s y s t e m s  which  a r e  e l l i p t i c  a c c o r d i n g  to Douglis  and N i r e n b e r g  [7]. The s y s -  
t e m  (2.8) is  a nonhomogeneous  Stokes  s y s t e m ;  it i s  e l l ip t ic  a c c o r d i n g  to Douglis  and N i r e n b e r g  [8]. The  
bounda ry  condi t ions  (2.11) fo r  (2.8) s a t i s fy  the addi t iona l i ty  condi t ion f o r m u l a t e d  in [9, 8]. Th is  g u a r a n t e e s  
the p r e s e n c e  of e s t i m a t e s  of w, r tha t  a r e  exac t  in the l im i t  in the Holder  n o r m s .  Apply ing  the r e s u l t s  [9, 
10] to the p r o b l e m  (2.8), (2.11) and us ing  the  inequa l i t i e s  (2.9), (2.13), we obta in  the r e q u i r e d  e s t i m a t e  

] w [2+~, ~ -~ I Vr I~, ~ ~ Ca e2 (2.14) 

fo r  e-< e 0. The  a b s e n c e  of a t e r m  of the f o r m  C ] w ] 0 f r o m  the r ight  s ide  is  exp la ined  by  the un iqueness  
t h e o r e m  fo r  the p r o b l e m  (2.8), (2.11) [3]: if ~ = 0 ,  ~p = X =60=0, then  w = 0 ,  r = c o n s t .  F r o m  the def in i t ion 
w = u  - r  r = q - a Q  and the inequal i ty  (2.14) fo l lows the c o r r e c t n e s s  of the second  e s t i m a t e  of (2.6). 

The inequa l i ty  (2.14) a l so  s ign i f i e s  tha t  

r(~l,  ~;  e) = y ( ~ l ,  ~2; e ) - [ - K ( e )  (2.15) 

w h e r e  ] V (~1, ~2; e)I1+i, II = O (82)for e - - 0 ,  while  K depends  only on e .  It i s  d e s i r a b l e  to show that  K ( e )=  O (e 2) 
fo r  e - - 0 .  We t r a n s f o r m  Eq.  (2.4), having subs t i t u t ed  in it i n s t ead  of the d e r i v a t i v e s  of u 2 f o r  ~2 = 0 t h e i r  
e x p r e s s i o n s  f r o m  the th i rd  equa t ion  (2.2) and the l a s t  r e l a t i o n s h i p  (2.3). We obta in  

f' " (2.16) 

Analogous ly  the r e l a t i o n s h i p  (1.11) is  t r a n s f o r m e d  into 

F" - -  EF = ~ ( - -  Q - 20U~ I 0~) 1~,=9 (2.17) 

In t eg ra t i ng  (2.16) f r o m  0 to l and us ing  (2.5) and the p e r i o d i c i t y  of u i with r e s p e c t  to ~ ,  we find 
I 

t" [(t + / ' 2 )  q (~, 0) --  2/'/"u~ (~, 0)] d~  = 0 (2.18) 
0 

We note  tha t  f o r  a g iven  f Eqs .  (2.2) and the bounda ry  condi t ions  (2.3) d e t e r m i n e  q with a c c u r a c y  up 
to a cons tan t  s u m m a n d .  The  r e l a t i onsh ip  (2.18) a l lows us  to e l i m i n a t e  a r b i t r a r i n e s s  in the d e t e r m i n a t i o n  
of q. Ana logous ly  f r o m  (2.16), (1.9) and (1.12) we have the r e l a t i onsh ip  

l 

S Q (~' 0) d~ : 0 (2.19) 
0 

which enab l e s  us  to  uniquely  d e t e r m i n e  the funct ion Q in the so lu t ion  of the p r o b l e m  (1.8)-(1.10),  (1.13). 
Us ing  (2.18), (2.19), (2.7), (2.14), (2.15), we conc lude  that  fo r  e ~ 0  the th i rd  e s t i m a t e  of (2.6) is  val id .  
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The r e s u l t s  thus obtained a re  then used  fo r  the p roof  of the r ema in ing  (first) inequal i ty  (2.6). We de-  
note b = f - e F .  Subtract ing Eq. (2.17), mul t ip l ied  by ~, f r o m  (2.16) we obtain  a d i f ferent ia l  equat ion fo r  b: 

b" --  kb = �9 (2.20) 

with the r igh t  s ide 

---- / u [i - -  (i -t- 1,2)-,1,] _ I~ [r -F 20w:/O~ -~- (2.21) 

(here we have u s e d  the definit ion r = q - e Q ,  w = u - e U ) .  In view of (2.5), (1.9), (1.12), the funct ion b sa t i s f i e s  
the condi t ions  

l 

b (~, -t- l) _--_ b (~]), f b d~l = 0 (2.22) 
0 

Applying the inequal i t ies  (2.7) and the second  and th i rd  f r o m  (2.6) to the e s t ima te  of the r ight  s ide of 
(2.21), we obtain 

I z (~1; e)Ii+~,[0.z] = O (e 2) (2.23) 

f o r  e - - 0 .  In addit ion,  I as  a pe r iod ic  funct ion of  b in view of (2.18), (2.19), (2.5) has  a z e r o  m e a n  value 
o v e r  the pe r iod .  Hence it fol lows that  fo r  e _< e 0 the solut ion b of the p r o b l e m  (2.20), (2.22) ex i s t s  and is 
unique.  On the bas i s  of (2.23) this  solut ion fo r  e - - 0  admi t s  the e s t ima te  I b[ 3+~, [0, l ]  =O (e2). With this 
we have p roved  the f i r s t  inequal i ty  of (2.6). The p roo f  of  P ropos i t i on  2.1 is comple ted .  

Concluding,  we note that  analogs  of P ropos i t i on  2.1 a r e  val id  in the p r o b l e m  ment ioned  in Sec. 1, which 
is  c o n c e r n e d  with waves  above a pe r iod ic  bot tom,  and the p r o b l e m  c o n c e r n e d  with the in t e rac t ion  of  a p a s s -  
ing wave with the f ree  s u r f a c e .  The approach  to the jus t i f i ca t ion  of a l i nea r  mode l  of t w o - d i m e n s i o n a l w a v e s  
on the s u r f a c e  of a v i scous  liquid, p r e s e n t e d  above,  admi t s  a l so  a gene ra l i z a t i on  to c e r t a i n  t h r e e - d i m e n -  
s ional  p r o b l e m s .  

3. T h r e e - D i m e n s i o n a l  S ta t ionary  Flow of a Cap i l l a ry  Liquid in a Vesse l .  Let  a v i scous  i n c o m p r e s -  
s i b l e l i q u i d f i l l i n  a r eg ion  G = {x,, x~, x3:(xl, x2) ~ ~, 0 ~ x3 ~ ]  (x,, x~)} and be in a s t e a d y - s t a t e  mot ion.  
Here  ~ is a bounded reg ion  of the x 1, x 2 plane with a suff ic ient ly  smooth  boundary  S. The mot ion  is induced 
by s o u r c e s  and s inks with z e r o  ove ra l l  f low d i s t r ibu ted  on the bo t tom ~ = {  xt, x2, x3: (xt, x 2) E~, x3=0}.  The 
s u r f a c e r  = {x~, x 2, Xa : (x~, x2) ~ Q, xa----- ] (x~, x2)} is a s s u m e d  to be f r ee .  The cy l ind r i ca l  su r f ace  B = {  xl, 
x2, x3: (xl, x2) ES, 0 < x 3 < f  (x 1, x2)} is  a r ig id  i m p e r m e a b l e  wall .  

The equat ions  of mot ion  wr i t t en  in d i m e n s i o n l e s s  va r i ab le s  have the f o r m  

A v - - v .  V v - - V p = O ,  V . v = 0  (3.1) 

where  v =(v 1, v 2, v 3) is the ve loc i ty  ve c t o r ,  p is the p r e s s u r e  deviat ion f r o m  the hyd ros t a t i c  p r e s s u r e  (it is 
a s s u m e d  that  the f o r c e  of  g r a v i t y  ac t s  in the d i r ec t ion  opposi te  to the d i r ec t ion  of  the x 3 axis) .  D imens ion-  
l e s s  va r i ab l e s  a r e  in t roduced  in the s a m e  way as in Sec. 1, with the d i f fe rence  that  now h is the d i a m e t e r  
of the reg ion  ~2. 

F o r  the s y s t e m  (3.1) we se t  up the boundary  condi t ions  

1~ = a(xl, x~), v ]B = 0 (3.2) 

Vir.n = 0 ' n .T l r .~  : 0 (3.3) 
Vd - .  (3.4) 

(t § ~2~-v I~ = ~o~ 0 (3.5) 

Here  n is the unit v e c t o r  of the ou te r  n o r m a l  and ~" is an a r b i t r a r y  unit v e c t o r  ly ing in the tangent  
plane to the f r e e  su r f ace ;  T is the s t r e s s  t enso r ;  V 2 is the two-d imens iona l  g rad ien t  with r e s p e c t  to the v a r i -  
ables  xl, x2; V 2 �9 e is the d ive rgence  of the v e c t o r  e = (el, e2); the p a r a m e t e r s  h and # have been  in t roduced  
in Sec. 1. Under  the condi t ions  (3.2) a is a g iven vec to r  funct ion of the Holder  c l a s s  C 2-~ (~), 0 <~ < 1 (~ is 
the c lo su re  of ~2) which is f ini te  in ~2 and such that  

I a dxl dx~ = 0 (3.6) 
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When writing (3.4) it is assumed that the right side is represented as a function of x l, x 2. In (3.5) N 
is the direct ion of the outer normal  to S, while 0 is a boundary anglewhich is determined by the proper t ies  
of the liquid and the mater ia l  of the walls of the vessel .  This condition plays the par t  of a boundary cofldi- 
tion for  the relationship (3.4), if the la t ter  is treated,  for a given right side, as an elliptic equation for 

f (xl, x2). 
The theorem of existence and uniqueness of the solution of the problem (3.1)-(3.5) has not beenproved.  

However, there are  grounds for  the assumption that this problem even for  small  I ale§ 5 has a single- 
p a r a m e t e r  family of solutions. Considerat ion of a periodic analog of the problem [3] as well as the analy- 
sis of the approximation of the problem (3.1) - (3.5), proposed below, in the case where the parameter /~  is 
small  leads to such a conclusion. Therefore  it is considered necessa ry  to set up side by side with (3.1)- 
(3.5) yet  another condition. F rom physical  considerat ions,  it is natural  to specify the mean depth of l iquid] :  

I ff  - -  }) dxl  dx2 = 0 (3.7) 

The approximate solution of the problem (3.1)-(3.5), (3.7) for  small  # is based on replacing, on the 
right side of (3.4), the function p n -  T I F "n by a constant.  Then the relat ionships (3.4), (3.5), (3.7) fo rm a 
closed sys t em for the determinat ion of f .  Fur ther  it turns out that for  a fixed f the problem (3.1)-(3.3) 
always has a solution. If l al 2+a, ~ is small,  then the field of velocities is uniquely determined, while the 
p re s su re  is determined with accuracy  up to a constant, p =p* +Xp -1 C, where p* is fixed, for example, by 
the condition p* (xl ~ x2 ~ 0)=0 at a cer ta in  point (xl ~ x2 ~ 0) fiE. Having denoted by T* the s t r e s s  tensor  
corresponding to the field v, p*,  we obtain ~n.T* ]r.n = - -  )~C ~ ~ m . T l r . n :  The hypothesis consis ts  of the 
fact  that for the solution of the problem (3.1)-(3.5), (3.7) the tensor  T* regular ly  depends on p for # ~ 0 .  

Putting p n .  T IF �9 n =-XC = const on the right side and making the substitution 

t = V + C (3.8) 

we ar r ive  at the following problem for  the determination of the function y (xl, x2): 

[ V2y ~ - - ~ g = O  (3.9) 
V~ VI-+IV~yl ~ 

(l + l = 0 (3 . t0 )  

The problem (3.9), (3.10) is a nonlinear boundary value problem for  an eUiptical equation of the min-  
imal-surfaces  type. Its solution descr ibes  a fo rm of equil ibrium of a capi l lary liquid in a field of gravity.  
The theory  of such problems up to the recent  t ime has been insufficiently developed. There are,  however, 
a number  of important  par t icu lar  eases  where the problem (3.9), (3.10) permits  effective investigation. In 
a one-dim ensional case, when f~ is the str ip 0 < x t < h and y does not depend on x2, this  problem is solved explicitly. 
If ~ is a c i rc le  (xt 2 +x22)l/2=r<h, then we can seek ax isymmetr ic  solutions y=y ( r ) .  A number  of investiga- 
tions (see [11] and the bibliography found there) a re  devotedto the  numerical  solution and qualitative analy- 
sis of the problem (3.9), (3.10). The existence of ax isymmetr ic  solutions is proved in [12]. 

In the case where ~ is an a rb i t r a ry  bounded region with a boundary of c lass  C 2+a while the bound- 
ary  angle 0 is close to Ir/2, we can find a small  solution of the problem (3.9), (3.10) (we note that for 0 =~/2  
the only solution is y = 0). This solution exists,  isunlque,  and is found by the method of success ive  approxi-  
mations.  In [13] the problem (3.9), (3.10) was investigated for  an a rb i t r a ry  region ~ but for large values 
of the pa r ame te r  X > 0. The authors [13] proved unique solvability of the problem and obtained an asymp-  
totic expansion of the solution for  2~ - -  co. 

Not long ago there appeared a paper by N. N. Ura l ' t s eva  [14] in which problems are studied for non- 
uniformly elliptic equations which are  more  general  than (3.9). The region ~ in [14] is assumed to be con- 
vex, while the boundary condition is assumed to be homogeneous. This corresponds  to 0 =~r/2 in (3.10). 
With these assumptions we consider  Eq. (3.9) with a nonzero right side (this signifies that on the surface 
of the liquid the p r e s s u r e  is distributed according to a given law). F rom the resul ts  [14] it follows that 
there exists a unique solution of this equation which sat isf ies the condition 3y /~  N= 0 on S. 

Let y (xl, x2) be a cer ta in  solution of the problem (3.9), (3.10). To determine f f rom the given y, we 
have to find the constant C f rom (3.8). For  this we substitute y = f - C  into (3.7), while the integral of y o v e r  
the region is calculated, integrating by par ts  Eq. (3.9) and using the condition (3A0): 

C = f --  )~-1 • cos 0 (3.11) 

where ~ is the rat io of the pe r ime te r  of the region ~ to  its area .  
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We determine  f (xl, x2) f r o m  the re la t ionships  (3.8)-(3.11). Then the conditions (3.5), (3.7) a r e  s a t i s -  
fied exact ly,  and (3.4) approximate ly ,  if p is smal l .  For  a g i v e n f  6C l+~ (~) we cons ider  the boundary va l -  
ue p rob lem (3.2), (3.3) for  the N a v i e r - S t o k e s  equations (3.1). Its solution admits  an a p r io r i  e s t ima te  of 
the n o r m  of v in a Sobolev vec tor  space W12 (G). This allows us, following the reasoning [3], to prove that 
the p rob lem (3.1)-(3.4) always has at l eas t  one genera l ized  solution. The solution is unique if lal2+~, ~ is 
sufficiently smal l .  The funct ions v, p a re  infinitely different iable within the open region G. If ] ~ C8+ ~ (~), 
then V ~ C ~§ (~'),  Vp ~ C~ (g') for  any closed Subregion G T of the region G which does not contain points of 
in te rsec t ion  of the f ree  sur face  and the bot tom with the side boundary G. 

The condition of applicabil i ty of this approximat ion in the p rob lem (3.1)-(3.5), (3.7) r equ i res  that for  
other  fixed p a r a m e t e r s  the coefficient  of sur face  tension ~r be sufficiently l a rge .  We note that for  wa te r  
a=72.5  g / s e c  2, v=0.01  cm2/sec  at 20~ p=l  g / c m  3. Consequently # < 10 -6 for  h > 1.4 cm.  It would, how- 
ever ,  be possible  to consider  or, and together  with it p ,  as  fixed, but cons ider  a slow motion. This c o r r e -  
sponds to a smal l  vec tor  function a (xl, x2). Assuming that vn.T* Ir 'n  -+ 0 for  a - - 0 ,  we a r r i v e  a t the  scheme 
of approximate  solution of the p rob lem of flow in a vesse l  p resen ted  above. 

Finally, analogous considera t ions  apparent ly  a re  applicable to a p rob l em concerned with a flow in a 
deep vesse l .  Let  p,  A, 0, a, ~2 be fixed a n d f  ~oo. We assume  that for  this Ti~*lr + 0, n. TIr .n  -~ const 
This  al lows us, as before ,  to de te rmine  approximate ly  the f ree  boundary as a min imum surface  in a field 
of g rav i ty .  The physical  meaning of the assumpt ion  made cons is t s  of the fact  that the shape of the f ree  s u r -  
face is only slightly influenced by sources  and sinks located fa r  away f r o m  it. The hypothesis  about T~j ~ I r -+0  
for  f ~ oo co r re sponds  to the well-known pr inciple  of Saint-Venant in the theory of e las t ic i ty  (see, for  ex-  
ample ,  [15], where different  ve rs ions  of this pr inciple  a re  presented) .  

We consider  an analog of the p rob lem (3.2), (3~ for  the Stokes s y s t e m  Av-Xrp =0, XT-v =0 in ap lane  
case .  Using the methods of the pape r  by Knowles [15], we can show that the e lements  of the t ensor  T* ex-  
ponential ly dec rease ,  as x~ inc reases ,  along any segment  which is pa ra l l e l  to the x 3 axis and l ies  inside the 
region G. It can be hoped that a s i m i l a r  a s s e r t i o n  is valid also for  the solution of the nonlinear  t h r e e - d i -  
mensional  p rob lem (3.1)-(3.3) at l eas t  in the case  where a is smal l .  
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