TWO METHODS OF APPROXIMATE DESCRIPTION
OF STEADY~-STATE MOTIONS OF A VISCOUS
INCOMPRESSIBLE LIQUID WITH A FREE BOUNDARY

V. V. Pukhnachey UDC 532.516

In this paper waves on the surface of a viscous incompressible liquid are investigated in a
linear approximation. It is shown that the linear theory gives the principal term of the solu-
tion of the problem of steady-state two-dimensional waves of small amplitude in an exact
formulation. Subsequently a three-dimensional steady-state motion of a viscous liquidwith
high surface tension in a vessel is considered. In the first approximation the free boundary
is determined as a minimum surface in a field of gravity, The velocity field is found from
the solution of the Navier—=Stokes equations,

1. Linear Approximation in the Theory of Surface Waves, The description of wave motions of a vis-
cous liquid leads to a necessity of solving problems for the Navier—Stokes equations with an unknown bound~
ary. Such problems at the present time are insufficiently studied (for the state of the problem see [1] and
the bibliography given there and also [2, 3]). There exists a number of approximate models of surface
waves in a viscous liquid. Historically the first of them was the linear theory of waves (Stokes [4]). This.
theory was developed in the investigations of Lamb [5], L. N. Sretenskii [6], and other authors.

As far as the author knows, up to now there is no answer to the question about the closeness of the
solution of the wave problem in the exact formulation (as a problem with a free boundary for the Navier—
Stokes equations) and in an approximation of the linear theory. Here this question is considered in the par-
ticular case of two-dimensional steady-state waves. In addition, the analysis is confined to an investiga-
tion of periodic wave motions of the forced-vibrations type. Examples of such motions are: a motion in a
strip whose upper boundary is free, while the lower (the bottom) is a rigid straight-lined wall, with inflows
and outflows of the liquid arranged periodically on it; steady-state gravity waves above an inclined periodic
bottom; a motion excited by a periodic passing pressure wave or a tangential stress applied to the free sur~
face.

With each of these flows we can associate a parameter which is proportional to the magnitude of the
external action (the power of the sources, the angle of inclination of the mean line of the bottom to the hori~
zon, the amplitude of the passing wave) and then consider the linear approximation with respect to this pa~-
rameter. We shall consider the estimate of the error of the linear approximation to the solution of the
problem in the exact formulation for small values of the parameter.

Below, for the sake of being definite, we consider the problem of periodic motion in a strip with
sources and sinks distributed over the bottom., The mathematical formulation of the problem is as follows.
It is required to find twice continuously differentiable functions v (x4, X;), (x;) and a continuously differentia-
ble function p (x4, X,) which satisfy the relationships '

Av—v.Vv—Vp=0, V.v=0 ] (1.1)

within the strip —oo <<z <Too, — 1 <z, <f (@);
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v (1’1 ‘Jf' l, 1'2) =V (xh '7:2)7 p ('Tl + lv .22) =p (xlﬁ '1‘2)’ f(xl + l) = f (1'1) (1‘2)

von=0, n.T-t=0 for x,=7F(x) (1.3)
D T VU, _

(ﬁ) —M=un.Tonfor  a=f () (1.4)

{ fdz =0 (1.5)

v=oca(r) for zy=—1 (1.6)

Here x,=f (x,) is the equation of the free surface, f'= df/dxy, n and T are the base vectors of the nor-
mal and the tangent to the free surface; T is the stress tensor with the elements Tij=—pdij +9vi/0xj+0 Vj/
dxi, i=1,2; v is the velocity vector, p +u'1}\x2 is the pressure.

The relationships (1.1)—(1.6) are written in terms of dimensionless variables; distances are referred
to the mean depth of liquid h, velocities are referred to vh™! @ is the coefficient of kinematic viscosity),
pressure is referred to pr?h™2 (o is the density of liquid); A=pgh%™!, p =pv?(oh)~! are dimensionless posi-
tive parameters (g is the acceleration due to gravity; o is the coefficient of surface tension); ¢ is a dimen-
sionless positive parameter which in the following is assumed to be small,

The condition (1.3) signifies the absence of flow of the liquid and tangential stress on the free sur-
face. According to the condition (1.4), the normal stress on the free boundary is equal to the surface pres-
sure, The condition (1.5) shows that the dimensionless mean depth of the liquid is unity. In the condition
(1.6) the vector function a, which specifies the velocity on the bottom (for x,=—1),is assumed to be [ -
periodic with the components @, a, from the Holder class C2*® [0, 7] and such that

4
Saz dz, =0 1.7
0
The condition (1.7) is necessary for the agreement of the boundary conditions (1.6) and the first equa-
tion of (1.3) with the equation of continuity. In order to eliminate a possibility of contact of the free sur-
face with the bottom, we stipulate yet that the inequality

[F1<<8<1 (8 = const > 0)
be fulfilled. ,

The existence of a unique solution of the problem (1.1)-(1.6) for small ¢ follows from the results of
[3]. We note that introduction of the surface tension into the boundary condition (1.4) on the free boundary
is essential: precisely this allows the solution of the problem to be reduced to the finding of a fixed point
of a certain continuous operator [3].

We now formulate the equations of a linear approximation in the problem (1.1)~(1.6). For this we dis~
card the nonlinear terms in Eqgs. (1.1), while the boundary conditions (1.3), (1.4) are applied to the nonper-
turbed free boundary x,=0. Denoting

v =¢&U, p_=30, f=¢F
we arrive at the following linear boundary value problem with a fixed boundary:

AU—VQ =0, V.U=0 (1.8)
within the strip — oo <Cz; T oo, —1 <z, < 03

Uz +la)=U(,z), Q@ +Lz)=0Q@.z), Fl,+)=F() (1.9)
[]2:0, 301/3%:0 for xz—_~0 (1.10)
F'—WF =p(— Q+20U,/0x;) for 2,=0 (1.11)

1
(Fdz =0 (1.12)

[}
U=a(z) for z,=—1 (1.13)

The Stokes system (1.8) has a unique solution which satisfies the conditions (1.10), (1.13) and the first
two conditions (1.9). If this solution is found, the function F is uniquely determined from the differential
equation (1,11) and the conditions (1.12) and the last condition (1.9). According to the notions of the linear
theory x,=¢€ F (x,) is the equation of the free boundary "in the first approximation.”
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2. Estimate of the Error of the First Approximation, We shall show that the function ¢ F (x;) deter-
mined from the linear problem (1.8)-(1.13) gives the principal term of the asymptotic expression, for £ —0,
of the function f (x4; £) which determines the form of the free boundary in the problem (1.1)~(1.6). A com~
parison of the velocity and pressure fields in the problem (1.1)- (1.6} and its linearization in terms of the
variables x;x, is difficult, since the functions-v, p and U, Q have different domains of definition. However,
it is possible to map the region of flow in the problem (1.1)-(1.6) onto the strip —1<x,<0 and compare the
solution of this problem in deformed coordinates with the solution of the problemr (1.8)-(1.13). For this we
go over to the new independent variables

T2 — f (z1)

BEESICE @.1)

L=z, &

The system (1.1) for this is transformed into

dwa  2(4EN[ BUr | A+ EPS 20 +{(1+22) Rr—U+Nf, A+efm _u }ﬂl___
e 11/ 06105 T+ FES (472 T+ t+11 0%
duy 39 14+8)f 8¢

(
TGy T TR ol
Pur 24BN P | AAFERSPun [ (WP (B w }a_

ERY T+7  6tde '~ (I+/F  e&2 | T+ T+7 T+7 108
Ouz 1 aq _O
MG T TTr 75?“ , 2.2)
aux (1 + gf)) f am + 57{2
EE Y 1+f BE

(w1 (B11 82) = vi (21, 22), w2 (Br, Ba) = w2 (z1, 1), q (1. B2) = P (L @), flm)=f(&), J =df/dE)
The boundary conditions (1.2)-(1.6) generate the following boundary conditions for the system (2.2):
uE L B =u € B u G+, gz) =u; (&, &)y ¢ (& + L &) =
=q (&, &) w = ey (1), uy = eay (&) for g = —1
1412 dm {4417 dus

’ a”'1 7] 6u2 —
- g L g o (2.3)
—f’ul_O for & =0
1" ’ 203+ om re Ous 217 (1419 0w Fus _
RENTV M=pl-0+) e+ —77 dgz+qf2651 T 359] for  E=0 (2.4)
FE+D=1E) Sf (€) dEy =0 2.5)
0

Proposition 2.1, For £ —0 the following estimates apply:

lf(gﬁ &) —eF () 13+a,[0,l] =0 (e?)
| u s Eai 8) — 60 (a, &) ooz = O (£9) (2.6)
| 9 Es, a3 8) — 8Q €w &) hian = O (%)

Here II denotes the rectangle 0 =¢,=1,-1=¢{(,=0; uis a vector with the components u,, u,; notation
of the form f=f (£4; £) is used to emphasize the dependence of the sought quantities on the parameter €,
If ¢ (x) € CMT2 Q), where m=0 is aninteger, Q is a closed bounded region, then lcp|m+a o denotes the
norm of ¢ in CMM*HQ,

The proof of Proposition 2.1 is based on the following a priori estimate of the solution of the problem
(2.2)-(2.5):
[whtan 419G lan A [ Floro, 0.0y < Cat | @lzva, 10,11 (2.7)
which is valid for a fixed a, if €= £, and &, is sufficiently small (Ck, k=1,2,... here and subsequently de-
notes positive constants). The estimate (2.7) in essence follows from the results [3] (in that work it was

assumed that A =0, which is not essential; in boundary condition (1.6) the parameter £ was absent, but in
spite of that the given velocity on the bottom was assumed to be small).

We introduce the functions w=u—cU, r=q—=cQ into the analysis. On the basis of (2.2), (1.8) these
functions satisfy in Il the system of equations

Aw—Vr=1¢, V-w=9 (2.8)

where A and V are the Laplacian and the gradient with respect to the variables &, £,, while ¥, ¢ are cer-
tain known functions of £,, £, which are expressed in terms of u, q, f and their derivatives. Essential are
the following inequalities which are satisfied by the functions ¥, ¢ for ¢ —0:
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(@l n<Cag?, |V ), m<C Cog? (2.9)

Both inequalities (2.9) are proved identically, We confine ourselves to the first of them. From (2.2),
{1.8) we find

_ U4 an  f o
=R wm T T e 2.10)

Since u € C2+a I, fFEC3T [0, 1] [3], we have ¢ €C! T2 (), The estimate (2.9) follows directly
from the definition of ¢ (2.10) and the inequality (2.7) (since a is fixed, |a !2+a, [0, 7] is included in the value
of the constant C,).

Proceeding from the conditions (1.9), (1.10), (1.13) and (2.3) it is not difficult to obtain boundary con-
ditions for the functions w, r. They have the form
wy =y, 0w, /08 = for § =0
wil +LE)=w(E, ) gE +LE)=¢g (E:s &) (2.11)
w=0 for § =—1

where

X :f,ulliz=09 o=—f"1+H1—Fy+
+F A+ A+ fRou /08 — (4 A+ )y / 08 le= 2.12)

The functions X, w belong to the classes C2* [0,1], C1* [0, 7], respectively, and in view of (2.7) and
(2.12) admit the estimates

[ ora, 0,0 << Ca8% @ Jiva, po. 17 << Coe? 2.13)

The subsequent reasoning is based on applying to the boundary value problem (2.8), (2.11) the apriori
estimates of the solutions of systems which are elliptic according to Douglis and Nirenberg [7]. The sys-
tem (2.8) is a nonhomogeneous Stokes system; it is elliptic according to Douglis and Nirenberg [8]. The
boundary conditions (2.11) for (2.8) satisfy the additionality condition formulated in [9, 8]. This guarantees
the presence of estimates of w, r that are exact in the limit in the Holder norms. Applying the results[9,
10} to the problem (2.8), (2.11) and using the inequalities (2.9), (2.13), we obtain the required estimate

|W[2+a,H + I Vr lu,H<C432 (2.14)

for e<e,. The absence of a term of the form C|w/|, from the right side is explained by the uniqueness
theorem for the problem (2.8), (2.11) [3}: if ¥ =0, ¢ = x=w=0, then w=0, r=const. From the definition
w=u—¢eU, r=q—&Q and the inequality (2.14) follows the correctness of the second estimate of (2.6).

The inequality (2.14) also signifies that

r (B & og) = v (&1 &y ) + K (g) (2.15)

where | ¥ (&1: £ €) e, I = O (s?)for € — 0, while K depends only on £, It is desirable to show that K (£)=0(}H
for € —0, We transform Eq. (2.4), having substituted in it instead of the derivatives of u, for £,=0 their
expressions from the third equation (2.2) and the last relationship (2.3). We obtain

i ’ 3 . y (2.16)
—e e A = — 12 9 Y 2
() — M =AM —2 10 2]
Analogously the relationship (1.11) is transformed into
F' WF =pn(— Q— 20U/ 0&) ey~ 2.17)
Integrating (2.16) from 0 to I and using (2.5) and the periodicity of u, with respect to &, we find
1
1+ 79 ¢ 6. 0) — 2 f'uy (B, 0)] dy = 0 (2.18)

]
We note that for a given f Eqs. (2.2) and the boundary conditions (2.3) determine q with accuracy up
to a constant summand, The relationship (2.18) allows us to eliminate arbitrariness in the determination
of gq. Analogously from (2.16), (1.9) and (1.12) we have the relationship

QEn0)dg =0 (2.19)

S T

which enables us to uniquely determine the function @ in the solution of the problem (1.8)-(1.10), (1.13).
Using (2.18), (2.19), (2.7), 2.14), {2.15), we conclude that for € — 0 the third estimate of (2.6) is yalid.
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The results thus obtained are then used for the proof of the remaining (first) inequality (2.6). We de-
note b=f—¢c¥F, Subtracting Eq. (2.17), multiplied by €, from (2.16) we obtain a differential equation for b:

b —Ab =1 (2.20)

with the right side
T=f =+ —pir+ 20w, /08 -+ (2.21)
+ (g - 20uy ) 08;) + 21 f'u1] feoo

(here we have used the definition r=q—eQ, w=u—teU). In view of (2.5), (1.9), (1.12), the function b satisfies
the conditions
4
bE+)=bG) {bds—0 @.22)
0o
Applying the inequalities (2.7) and the second and third from (2.6) to the estimate of the right side of
(2.21), we obtain

[T €15 €) i oy = O (29) (2.23)

for € —0. In addition, I as a periodic function of b in view of (2.18), (2.19), (2.5) has a zero mean value
over the period. Hence it follows that for € =g, the solution b of the problem (2.20), (2.22) exists and is
unique. On the basis of (2.23) this solution for &£ —0 admits the estimate | b| s+, [o, l‘] =0 (%), With this
we have proved the first inequality of (2.6), The proof of Proposition 2.1 is completed.

Concluding, we note that analogs of Proposition 2.1 are valid in the problem mentioned in Sec. 1, which
is concerned with waves above a periodic bottom, and the problem concerned with the interaction of a pass-
ing wave with the free surface. The approach to the justification of a linear model of two-dimensional waves
on the surface of a viscous liquid, presented above, admits also a generalization to certain three-dimen-
sional problems.

3. Three-Dimensional Stationary Flow of a Capillary Liquid in a Vessel. Let a viscous incompres-
sibleliquidfillin a region G = {z;, %y, Zs:(2y, T) = Q, 0 < x5 <f (21, 2,)} and be in a steady-state motion,
Here © is a bounded region of the x4, X, plane with a sufficiently smooth boundary S. The motion is induced
by sources and sinks with zero overall flow distributed on the bottom 2={ X4, X9, X3t (X4, Xo) €0, x3=0}. The
surfacel = {z;, &y, 25 (21, T,) EQ, 2,=f (¥;, ,)} 18 assumed to be free, The cylindrical surface B={ Xy,
Xy, X3: (X1, X9) €8, 0<x3<f (x4, xz)} is a rigid impermeable wall.

The equations of motion written in dimensionless- variables have the form
Av—v.Vv—Vp=0, V.v=0 (3.1)

where v=(v;, Vy, V3)is the velocity vector, p is the pressure deviation from the hydrostatic pressure (it is
assumed that the force of gravity acts in the direction opposite to the direction of the x; axis)., Dimension-
less variables are introduced in the same way as in Sec, 1, with the difference that now h is the diameter
of the region Q,

For the system (3.1) we set up the boundary conditions

v [Z} = a(xli x2), v lB =0 (3.2)
vipn=0, n-T|p-v=0 (3.3)

Vof
Vool ——2 | Af = .T’ . 3.4
: [V1+IV2]|"] f=pn Pn (3.4)
(L | Vof Py oh | = cos® (3.5)

Here n is the unit vector of the outer normal and T is an arbitrary unit vector lying in the tangent
plane to the free surface; T is the stress tensor; V, is the two-dimensional gradient with respect to the vari-
ables x, X,; V,*e is the divergence of the vector e = (e4, e,); the parametersA and p have been introduced
in Sec. 1. Under the conditions (3.2) a is a given vector function of the Holder class C*"® @), 0<a <1 (Qis
the closure of €) which is finite in & and such that

S aydzy day = 0 (3.6)
Q
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When writing (3.4) it is assumed that the right side is represented as a function of Xy, X,. In (3.5) N
is the direction of the outer normal to S, while 6 isaboundaryanglewhich is determined by the properties
of the liguid and the material of the walls of the vessel. This condition plays the part of a boundary condi-
tion for the relationship (3.4), if the latter is treated, for a given right side, as an elliptic equation for

f (Xb X2)-

The theorem of existence and uniqueness of the solution of the problem (3,1)~(3.5) has not beenproved.
However, there are grounds for the assumption that this problem even for small | aly+ a, & has a single~
parameter family of solutions. Consideration of a periodic analog of the problem [3] as well as the analy~
sis of the approximation of the problem (3.1) -~ (3.5), proposed below, in the case where the parameter u is
small leads to such a conclusion. Therefore it is considered necessary to set up side by side with (3.1)~ _
(3.5) yet another condition, From physical considerations, it is natural to specify the mean depth ofliquidf:

§ ¢ — Dziday — 0 (3.7

Q

The approximate solution of the problem (3.1)-(3.5), (3.7) for small p is based on replacing, on the
right side of (3.4), the functionyn-T 'I‘ ‘n by a constant. Then the relationships (3.4), (3.5), (3.7) form a
closed system for the determination of f. Further it turns out that for a fixed f the problem (3.1)-(3.3)
always has a solution. If lal2+a O is small, then the field of velocities is uniquely determined, while the
pressure is determined with accﬁracy up to a constant, p=p* +Ax"! C, where p* is fixed, for example, by
the condition p* (xy°, %,°, 0)=0 at a certain point (x,°, x,°, 0) €Z. Having denoted by T* the stress tensor
corresponding to the field v, p*, we obtain pn-T*|p-n = — AC 4 pr-T|r-n. The hypothesis consists of the
fact that for the solution of the problem (3.1)-(3.5), (3.7) the tensor T* regularly dependson u for y —0.

Putting pun-T ll“ -n=—xC =const on the right side and making the substitution

we arrive at the following problem for the determination of the function y (xy, X,):
Vay
|\ Virrewr) Y
. @
A+ [ Vay iyt FXT ]s = cosf (3.10)

The problem (3.9), (3.10) is a nonlinear boundary value problem for an elliptical equation of the min-~
imal-surfaces type. Its solution describes a form of equilibrium of a capillary liquid in a field of gravity.
The theory of such problems up to the recent time has been insufficiently developed. There are, however,
a number of important particular cases where the problem (3.9), (3.10) permits effective investigation, In
a one~dimensional case, when Qisthe strip 0 < x; < handy doesnot depend onx,, this problem is solved explicitly.
K Q is a circle (x, +x22)1 2=y <h, then we can seek axisymmetric solutions y=y(r). A number of investiga-
tions (see [11] and the bibliography found there) are devotedtothe numerical solution and qualitative analy-
sis of the problem (3.9), (3.10). The eXistence of axisymmetric solutions is proved in [12],

In the case where © is an arbitrary bounded region with a boundary of class C2*® while the bound-
ary angle @ is close to #/2, we can find a small solution of the problem (3.9), (3.10) (we note thatfor ¢ =7/2
the only solution is y =0), This solution exists, isunique, and is found by the method of successive approxi-
mations, In [13] the problem (3.9), (3.10) was investigated for an arbitrary region @ but for large values
of the parameter A > 0. The authors [13] proved unique solvability of the problem and obtained an asymp-
totic expansion of the solution for A — =,

Not long ago there appeared a paper by N. N, Ural'tseva [14] in which problems are studied for non-
uniformly elliptic equations which are more general than (3.9). The region € in [14] is assumed to be con-
vex, while the boundary condition is assumed to be homogeneous, This corresponds to 8 =7/2 in (3.10).
With these assumptions we consider Eq. (3.9) with a nonzero right side (this signifies that on the surface
of the liquid the pressure is distributed according to a given law). From the results [14] it follows that
there exists a unique solution of this equation which satisfies the condition 9y/9N=0on S,

Let y (x4, x,) be a certain solution of the problem (3.9), (3.10). To determine f from the given y, we
have to find the constant C from (3.8). For this we substitute y=f—C into (3,7), while the integral of y over
the region is calculated, integrating by parts Eq. (3.9) and using the condition (3.10):

C=F—AY%cosb (3.11)

where ® is the ratio of the perimeter of the region @ to its area,
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We determine f (x, X;) from the relationships (3.8)-(3.11). Then the conditions (3.5), (3.7) are satis-
fied exactly, and (3.4) approximately, if u is small, For a given f €C1*® @) we consider the boundary val-
ue problem (3.2), (3.3) for the Navier—Stokes equations (3.1). Its solution admits an a priori estimate of
the norm of v in a Sobolev vector space W1 (G). This allows us, following the reasoning [3], to prove that
the problem (3.1)-(3.4) always has at least one generalized solut1on The solution is unique if lalz+a Q is
sufﬁclently small. The functions v, p are infinitely differentiable within the open region G, ¥ j& C3+Gl Q),
then v & Qi (G ), Vp = CGL (G) for any closed subregion G' of the region G which does not contain points of
intersection of the free surface and the bottom with the side boundary G.

The condition of applicability of this approximation in the problem (3.1)-(3.5), (3.7) requires that for
other fixed parameters the coefficient of surface tension o be sufficiently large. We note that for water
0="72.5 g/sec?, v=0.01 cm?/sec at 20°C, p=1 g/cm3. Consequently x <107% for h> 1.4 cm, It would, how-
ever, be possible to consider o, and together with it u, as fixed, but consider a slow motion., This corre-
sponds to a small vector function a (x4, X;). Assuming that pn-T*|p-n — 0 for a—0, we arrive atthe scheme
of approximate solution of the problem of flow in a vessel presented above.

Finally, analogous considerations apparently are applicable to a problem concerned with a flow in a
deep vessel, Let p, A, 0, a, Q be fixed and f —«, We assume that for this T;*|p — 0, n.7|p-n — const..
This allows us, as before, to determine approximately the free boundary as a minimum surface in a field
of gravity. The physical meaning of the assumption made consists of the fact that the shape of the free sur-
face is only slightly influenced by sources and sinks located far away from it, The hypothesis about 7;;* |p — 0
for f — » corresponds to the well-known principle of Saint-Venant in the theory of elasticity (see, for ex-
ample, [15], where different versions of this principle are presented).

We consider an analog of the problem (3.2), (3.3) for the Stokes system Av—Vp=0, V-v=0 in aplane
case. Using the methods of the paper by Knowles [15], we can show that the elements of the tensor T* ex-~
ponentially decrease, as x; increases, along any segment which is parallel to the x; axis and lies inside the
region G. It can be hoped that a similar assertion is valid also for the solution of the nonlinear three-di-
mensional problem (3.1)-(3.3) at least in the case where a is small.
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